
NONSTEADY THERMOCAPILLARY MASS TRANSFER IN THE LASER ALLOYING OF METALS 

A. A. Uglov, I. Yu. Smurov, A. G. Gus'kov, and K. I. Tagirov UDC 536.25 

This article examines convective mass transfer of an impurity in a shallow bath 
of molten metal with allowance for the motion of the fusion front during the 
laser alloying of metals. 

The laser alloying of metals is a promising technology. Various schemes are employed to 
introduce the alloying elements: from previously applied coatings, from the gas phase, by 
the injection of powder into the laser heating zone, etc. [i]. The redistribution of elements 
in the molten bath is accomplished to a significant extent by the convective mechanism of 
mass transfer. 

To determine the optimum regimes for the laser alloying of metals, it is necessary to 
know the character of mixing of the melt and the nonsteady rates of its motion. Among the 
hydrodynamic processes taking place in the liquid phase during the fusion of metals by laser 
radiation, one of the most important is thermocapi!lary convection, i.e., motion of the liq- 
uid due to the dependence of the surface tension of the melt on temperature and the nonuni- 
formity Of the heating of the free surface. Several studies [2-9] have developed approaches 
to studying thermocapillary flows, a characteristic feature of which is the constancy (over 
time) of the surfaces bounding the regions of steady [2, 4-8] and unsteady [3, 9] motion of 
the liquid. In laser alloying, the character of mixing of the melt and the mass transport 
of the alloying additions in it are significantly influenced by the movement of the phase 
transformation boundary into the solid. This movement causes a change over time in the form 
and path of the particles of the alloying component, which in turn leads to a certain distri- 
bution of the components in the remelting zone. 

The goal of the present study is to examine the possibilities of deep transport of an 
alloying component in a melt from the surface by means of thermocapillary mixing during the 
surface alloying of metals. 

FORMULATION AND SOLUTION OF THE PROBLEM 

We will examine the nonsteady melting of a massive metal body acted upon by laser radia- 
tion. We will assume that the free surface of the melt is planar and that the molten bath 
is shallow. In a cylindrical coordinate system r, z,~ (with the z axis directed along the 
depth of the solid phase), the phase boundary is determined by the equation z = S(r, t). We 
will also assume that the thermal conductivity and diffusivity of the liquid and solid phases 
and the density, absolute viscosity, and kinematic viscosity of the melt are constant. The 
energy flux absorbed on the surface z = 0 is distributed in accordance with Gauss' law q(r) = 
q0exp(-kr2). Thus, the problem is characterized by cylindrical symmetry. 

At the moment of the beginning of melting t = tm, the projections of the velocity of the 
melt Vr, v z are equal to zero. It is known from boundary-layer theory [I0] that the inertial 
terms in the Navier-Stokes equations can be ignored relative to the viscous terms if the cor- 
rected Reynolds number R* = (Vrrf/v) (S/rf) 2 << i, i.e., if the flow velocities are sufficient- 
ly low. Here, rf = i/vrk-is the radius of the hot spot. In this case, the inequality Re*Pr << 
1 (meaning that conduction predominates over convection) is also satisfied for liquid metals, 
since molten metals are generally characterized by a low Prandtl number Pr = v/a I << 1 [2]. 
Since the bath is shallow, then S << R ~ rf; 82vj/Sr 2 ~ (i/r)Svj/Sr ~ vj/rf 2 << 82vj/Sz 2 ~ 

vj/S2; 82Ti/Sr 2 ~ (l/r) 8Ti/Sr ~ ATi/rf2 << 82Ti/Sz 2 ~ ATi/S2; 8S/8r << i, where R(t) is the 

radius of the bath; j = r, z; i = i, 2. Thus, at t ~ tm, the following mathematical formula- 
tion of the problem is valid: 
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v r, 3Vz/ar << 8Vr/3 z. Differentiating Eq. (i) with respect to z and Eq. (2) with respect to 
r, subtracting the second from the first, and making the substitution of variables x = 
zq/q0, �9 = t(q/q0) 2, we reduce problem (i-i0) to the following unidimensional (in the variable 
x) nonsteady problem: 
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Here, G(x, x) = (SVr/SZ - 8Vz/Sr)/~r - (3Vr/3Z)/~r , 13 = - 2ka/~, g ( ' r )  : xSu1(0 , ~)/~, 
s(x) = S(T, t)exp(-kr2), ui(x , %) = Ti(r , z, t). An approximate analytical solution of prob- 

lem (14-18) was obtained in [ii]. We change over from G to the functions Vr(r , z, t), Vz(r , 
z, t) by means of (3) using the following formulas: 
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Fig. i. Projection of velocityvzat thepointr m, z m 
at the moment t = 1 msec in the melting of titanium 
with k = 200 cm -2 (i), i00 (2), 20 (3); 4) velocity 
of the fusion front 8S/8t, vz, cm/sec; q0, W/cm2- 

Differentiating (13) with respect to �9 and using (ii) and (12), we obtain the condition 

OG 

An analysis shows that the function G(x, ~) decreases monotonically for x. It is convex 
downward and has one zero in the interval 0 5 x ~ s(~). Meanwhile, at �9 = tm, i.e., at the 
moment that melting begins, G depends linearly on $ = x/s. Since melting begins at the point 
r = 0, then T m = tm~ Having expanded the functions g(~) and G(x, T) into series in powers of 
T - ~m, it can be shown that as the initial condition for unambiguous determination of G, it 
is sufficient to require that it be finite at �9 § ~m" Thus, to find an approximate solution 
to problem (11-13), it is convenient to approximate G(x, ~) in the interval 0 5 x ~ s(~) by 
a second-degree polynomial 

G (x, ~) = Go (~) ~- G1 (~) x ~- O~ (T) x 2. ( 21  ) 

We d e t e r m i n e  t h e  f u n c t i o n s  Go, G1, and G2 f rom ( 1 2 ) ,  ( 1 3 ) ,  and  ( 2 0 ) .  Having i n s e r t e d  
(21) into (19), we obtain expressions for the components of the velocity field of the melt: 
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Discussion of the Results. The flow of the liquid phase is vortical in character. Mean- 
while, the melt moves toward the surface in the region near the hot spot and from the center 
to the edges of the bath on the free surface z = 0 [12, 13], since the thermocapillary force 
is directed toward a decrease in temperature ~ > 0. 

From the surface z = 0, the alloying components can reach the bottom of the melt only 
when the maximum positive value of the projection of vzmaX (reached at the point rm~ 3R(t)/4 , 
zm~S(rm, t)/3) exceeds the velocity of the fusion front 8S/8t (the dashed line in Fig. i). 
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Fig. 2. Time dependence of the coordinate z(t) of a melt 
particle located at the initial moment t = 0 at the point 
r0, z0 in the melting of titanium (I) ro/rf =0.2; 2) 0.4; 
3) 0.6; 4) 0.8; 5) 1.0): b) qo = 5"104 W/cm2, Zo = 2 pm, 
k = 150 cm -2 (solid lines), 200 cm -2 (dashed lines); b) 
qo = lOS W/cm2, zo = i0 Dm, k = i00 cm -2 (solid lines), 
150 cm -2 (dashed line); c) qo = 1 Os W/cm2, zo = 2 ~nn, k = 
i00 cm -2, z, ~m; t, msec. 

Due to the nonsteadiness of melting, the form and size of the vortex (and, thus, the 
paths of the liquid particles) change over time. This leads to quantitative and qualitative 
differences between our results and the results obtained in [2-9]. A characteristic feature 
of the given process is the openness of the particle paths and the increase in their curvature 
over time. There are also melt particles for which the radius of curvature of the path de- 
creases over time at a certain stage of the process. This occurs in a certain neighborhood 
of the center of the vortex, which moves in the direction of increasing r and z. Here, as 
shown by analysis of the velocity field (22), the position of the center of the vortex is 
described by the approximate relations r C = R(t)/2, z C ~ S(rc, t)/3. Thus, certain paths 
may turn out to be self-intersecting (curve 4 in Fig. 2b). 

Laser alloying of metals is generally done from coatings and coverings, as well as from 
the gas (liquid) phase or by introducing the alloying component as a powder. If the thick- 
ness of the layer of the alloying component on the surface is small compared to the depth of 
the molten bath, then the averaged thermophysical properties and the viscosity of the melt 
differ negligibly from the corresponding parameters of the initial material. Otherwise, we 
should examine thermocapillary convection in a two-layer system. The surface properties of 
the melt (o and ~, as well as absorptivity) may change appreciably even with small concentra- 
tions of the component applied on the surface [2]. Thus, to describe the initial stage of 
convective mass transfer in the alloying of materials from coverings (coatings), the parameter 

for melts of the alloying components should be inserted in the resulting relations. Here, 
for the sake of definiteness, we will examine laser alloying from the gas phase. 
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Fig. 3. The coordinate z(t) of a melt particle at the moment 
t = 1.5 msec in the melting of titanium with q0 = 10s W/cm2, 
z 0 = 2 ~m (solid lines) and i0 ~m (dashed lines): I) k = I00; 
2) 150 cm -2 r0, mm. 

Fig. 4. Dependence, on heat flux and the concentration factor, 
of the maximum depth of penetration of a melt by alloying-com- 
ponent particles, located at the depth z0 = 2 ~m at the moment 
t = 0, at the moment of time t = 1.5 msec in the melting of ti- 
tanium, k, cm-2; Zm, ~m. 

The alloying component, entering at the free surface z = 0, is transferred into the melt 
by diffusion to the depth 6 ~ Dv~-, where D is the diffusion coefficient; At is the time an 
elementary volume of the melt is located on the surface, At ~ t - t m. Meanwhile, it is usu- 
ally the case that 6/S ~ D/v~I << i. Liquid particles whose paths at a certain stage approach 
the surface to within the distance 0 < z < ~ transport the alloying component into the bath 
only in the case when the projection v z of the velocity of the particles is positive. This 
occurs far from the center of the hot spot, at r C < r < R(t). The quantity vzmaX(t) increases 
monotonically with time. Meanwhile, at t § tm, i.e., at the initial stage of fusion, both 
vzmaX and the derivative dvzmaX/dt approach zero. Thus, the alloying component is transported 
to the greatest depth by those liquid particles which during their movement turn out to be in 
the neighborhood of the point rm, z m at the final stage of action of the laser pulse. In Fig. 
2, these paths correspond to curves 3 (Fig. 2a), 5, and 1 (Fig. 2b and c). Paths 1 prove to 
be the most favorable for transporting the alloying component into the melt, as well as for 
other reasons. In fact, as can be seen from Fig. 2, these particles come closest to the free 
surface of the liquid phase z = 0 during the initial stage of their movement and thus trans- 
port the maximum amount of alloying component into the bath. 

Figure 2 shows the paths of particles brought into motion after the other particles 
(curve 3 in Fig. 2a and curve 5 in Fig. 2b) but reaching a significant depth in the melt due 
to their proximity to the point rm, z m at a certain stage. There are also particles which 
manage to make almost a complete revolution and return to the neighborhood of their initial 
position during the time of action of the pulse (dashed curve 2 in Fig. 2a). 

Thus, along with laser alloying regimes which ensure a relatively uniform distribution 
of the alloying component in the bath, there are other regimes which produce a nonmonotonic 
distribution with a minimal concentration in the vicinity of the center of the vortex. 

It is evident from Fig. 3 that the depth of penetration of an alloying addition into a 
bath by means of thermocapillary mixing depends heavily on the initial position of the ele- 
mentary volumes accomplishing the mass transport. The existence of minima on the given curves 
means that particles having r0 as their initial coordinates turn out to be far from the point 
rm, z m in the course of their movement, i.e., they turn out to be in the region least suitable 
for deep mass transfer. 

It is convenient to use Fig. 4 to analyze the feasibility of deep convective transport 
of alloying additions into a melt by means of thermocapillary convection. Figure 4 shows 
different regimes of laser irradiation. It is evident that an increase in the parameters q0 
and k intensifies mass transfer, since this is accompanied by an increase in the thermocapil- 
lary force (4) which induces the melt to move. This force is proportional to the temperature 
gradient on the surface 8T1/Sr ~ q0 /ka1(t - tm)/l. 
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It should be noted that the method described here for calculating the nonsteady melting 
of metals by changing over to new variables x and ~, with the above assumptions, is valid for 
an arbitrary law governing the spatial distribution of heat flux (9). Thus, in a number of 
cases of laser irradiation, the function q(r) is conveniently approximated in the form of a 
superposition of Gaussian sources. Here, the minimum characteristic linear dimension q(r) 
should be considerably greater than the depth of the heat-affected zone. Thus, generally 
speaking, the given method is inapplicable in regard to allowing for the fine-scale structure 
of laser radiation. Substantial heat-flux gradients over small distances result in high val- 
ues of the temperature gradient 8T/Sr, i.e., the heat fluxes in the plane z = 0. This tends 
to smooth the temperature on corresponding small sections of the surface. Thus, in such 
cases, it is possible to examine the melting of a solid by a heat flow averaged over small- 
scale gradients. 

NOTATION 

r, z, ~, cylindrical coordinates; t, time; Ti, temperature of the liquid (i = i) and 
solid (i = 2) phases; q(r), absorbed energy flux; k, concentration factor; Tm, melting point; 
L, heat of fusion; p, density; %i, ~i, thermal conductivity and diffusivity; To, initial tem- 
perature; N, ~, absolute and kinematic viscosities of the melt; Vr, Vz, projections of the 
melt velocity on the coordinate axes r and z; p, pressure; o, surface tension. 
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